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Nondissipative hydrodynamic equations for a charged, polarized and magnetized nonrelativistic fluid moving in a 
self-consistent electromagnetic field are presented and shown to possess a bamiltonian structure, associated to the dual of a 
certain Lie algebra of semidirect-product type. Ideal magnetohydrodynamics and electrohydrodynamics both emerge in 
hamiltonian form as regular limits (i.e., special cases) of the hamiltonian structure for the more general theory. 

Dynamics era charged fluicL The nondissipative, 
nonrelativistic motion of a charged, polarized and mag- 
netized fluid in the presence of a self-consistent elec- 
tromagnetic field is described by the following equa- 
tions in the laboratory galilean frame, 

b t M i = - ~ k ~ i ,  i , k=  1,2,3, 

a t p  = - div(ptO, atS = -  div(Su), 

atB = - curiE, atD= c u r l H -  J, 

(la) 

(Ib, c) 

(Id, e) 

(If, g) div D = q, div B = 0, 

with 

Mi = Pvi + gi, J = qo, ( lh,  i) 

ni k =pski + Mi ok - E~D Ic - H~B k. (lj)  

In ( l a - l j )  p is the mass density of the fluid; I) is 
the fluid velocity; a t = a/at is the partial time deriva- 
tive; a k = a/ax k the partial space derivative;M = pu 
+ g is the total momentum density, including the elec- 
tromagnetic momentum density, g; rt k is the momen- 
tum flux tensor, containingP the total pressure, in- 
cluding thermodynamic, electromagnetic, and, possi- 
bly, striction contributions; S is the total entropy den- 
s i ty;g the electric field intensity;B the magnetic in- 
tensity;D the electric displacement vector;H the mag- 
netic induction; q the electric charge density defined 
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in ( lf) ;  and? = qu the convective current density given 
in (li). The dynamical equations ( l a - l e )  preserve the 
static Maxwell equations (1 f, l g), provided the latter 
are assumed to be satisfied initially and the total 
charge is conserved (i.e., when ~tq + d i v / =  13). Gen- 
eralization of the system (1) to the case of many fluid 
species is straightforward, but not discussed here. 

In the notation of Pauli [1], p. 101, the vectors in 
(lj)  

E * = E + ~ × B ,  H * = H - v × D ,  (2a, b) 

measure the forces on a unit electric charge (2a) or 
magnetic pole (2b) moving with the fluid. That isE* 
andH* are, respectively, the electric field intensity 
and magnetic induction as measured in the fluid rest 
frame. For later use in the constitutive relations we al- 
so define fieldsD* andB* by (denoting c as the speed 
of light) 

D* = D + I) X HIe 2, B* = B - I~ X E/c 2, (2c, d) 

which are, respectively, the electric displacement vec- 
tor and magnetic field intensity as measured in the 
rest frame of the fluid. 

The system of equations (1 a -  lg) with definitions 
( l h - l j )  and (2a, 2b) is closed by specifying constitu- 
tive relations for the quantitiesP, E*, H*,  g in ( l h -  l j), 
the temperature T, and the chemical potential # via 
the thermodynamic identity for the total internal ener- 
gy density e, in the laboratory galilean frame. This 
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thermodynamic first law, to first order in u/c, is 

de=TdS+i tdp+E*.dD+H*.dB-g ,  do. (3) 

The total pressure is defined by 

P = -  e +pit + TS +g* "D +H* "B, (4a) 

which is the thermodynamic potential in the intensive 
variables, 

dP=SdT+pdit+D.dg* +B.dH* +g.do. (4b) 

The total energy density in the laboratory frame is 
equal to 

1 h - ~  pv 2 +g.o+e (5a) 

_ 1 - - -~pv  2 +M.o + e [by (lh)]. (5b) 

As an example, we may take the total energy densi- 
ty in (5) to be 

h' '=~Ov2 +g(p,S)+½E'D+ I H'B, (6) 

and choose the constitutive relations to be linear and 
isotropic in the rest frame of the fluid, namely 

D* = t~E*, B* =/~H*, (7) 

with constants ~t and/3. In this case, one finds (ref. [2], 
p. 34) 

E* = a - l o  + (c-2/oq3) v X B, (8a) 

/at* = 8-1B -- (c-2/0t~) u X O. (8b) 

Consequently, h' in (6) may be rewritten using (2), 
(7), and (8) as 

h' ~ 2 + ~(p,S) D2 B2 + (1 c -2 '  
= ~ po  + ~- +-y:~ - -~-  )~. g 

1 D 2 B 2 c -2 
=-~pv2+v'g+e(P'S)+:~ "~ 28 o~ o.g,(9a)  

where 

g = D × B (9b) 

is the Minkowski form [1-3] of the electromagnetic 
momentum density. The total pressure in this example 
by (4a), (5), (8), and (9) is found to separate additively 
as 

1 • P=PMAT +-~E* "D + ~ H  "B, (10a) 

where 

PMAX = -- ~(P, S )  + p# + ?S = p;)(~/P)/~PlS. (lOb) 
We now state the main result of this work: The 

electromagnetic fluid equations (1 a -  l j) comprise a 
hamiltonian system. This system can be written in the 
form 

btF={H,F), F~{Mi, P,S,B,D}, (11) 

with harniltonian, H, given by 

H=fd3xh=fd3x[-¼Oo 2 +M.~+e], (12) 

where e satisfies the first law (3). The variational 
derivatives of H in (12) are determined from 

8n= f d3x [(it-~ u2)~p + T~S +~.~M 

+(M-pv-g) '61)+E*'~D+H*'6B],  (13) 

so that, e.g., 6H/aM = v and the coefficient of 6v 
vanishes by (lh). The Poisson bracket {H, F~ in (11) 
is given by (summing on repeated indices) 

_ 3 -6F 6F ~H 

~F ( ~H + an + +M/a 0 
+-g-~ixpai~ sai (a/Mi 

+ (D/~ i _ k ~H k 6H 

~_~_Tfa / _ k ~H + D i D ak$i/)'~-'~] 

k 6H 
+ ~Bi (a/Bi - B  ~k6i/)-~]] 

( SF 6H ~F 6H) (14b) +f d3x ~ e'/k3k 8D/ 8--1~i ei/kak " ~ /  ' 

where ~i/ is the Kronecker delta and el/k is the totally 
antisymmetric tensor density in three dimensions. 

Substitution of the variational derivatives of H ob- 
tained from (13) into the Poisson bracket (14~, b) 
readily yields the dynamical e quations (I a -  1 e) with 
lrf given by ( l  j) and P given by (4a). 

In particular, we verify ( l b - l e )  in hamfltonian 
form directly from (13) and (14) as follows, 

atp = {H, p) = - a/(po/), 05) 
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a t S = {H, S}  = - a~ (So/), (16) 

btDi = {H, Di} = _ b/(Dio/) + Dk~koi + eoka/H* k 
(17a) 

= [curl(o × D)] i - ° i  (div D) + (curl H)i 

- [curl(u× D)] i [by (2b)l (17b) 

= (curl H) i - J i  [by (lf)  and (li)], (17c) 

a t B i = (H, Bi} = - a/(Bi o]) +Bkakoi -- ei]ka/E *k 
(18a) 

= [curl(v X B)] i - vi (div B) - (curiE)/ 

- [curl(oK B)li [by (2a)] (18b) 

= - (curiE)/ [by (lg)l. (18c) 

Finally, we verify (la) in hamiltonian form. 

[(~H-~H 8H 5H 
atMi= {H, Mi} = - a k  O ~p + b'~-~+ M] -~]+D] sD] 

+ B/ SB/ ) 6H - Dk 6H - Bk 6H ] .6I-I_ h 6i k + Mi ~-~k " . 
6D' 6B i 

(19a) 

= - a k [ ( p ( -  ½v 2 +/~) + T$ + M . u  +E* .O  

+ H*. B -  h) ~ k i + Mi ok - E~D k _ H~.Bk ] 

[by (13)] (19b) 

: _ ak(p$ k +Mi ok - E ; D  k - H ; B  k) 

[by (4) and (5)]. (19c) 

To interpret the momentum equation (19c) we 
specialize to the example of linear isotropic media 
withg = D X B as in (9b). For this case the pressure 
separates additively as in (10). Using the relation (lh) 
in the formM = po+D X B then decomposes the mo- 
mentum equation (19c) into an equation for the fluid 
velocity, 

pdoi/dt = - aiPMA T + q(E + • X B)i 

+ ½ (I) kEk, i - E kDk, i + B kHk, i - HkBk, i) 

+ O/[- o 'D X B 6{ + v/(D X B)i +D/(B X o)i 

+ B/(u X O)i], (20) 

with d/dt = 3]3t +v.  V the material derivative. Eq. 
(20) contains various terms describing moving-material 
effects. In particular, the last four terms in the square 
bracket describe such effects. Although eq. (20) is not 
simple to interpret, it will be useful later when the 
equations of magnetohydrodynamics and electrohy- 
drodynamics are derived as special cases of the inclu- 
sive theory presented here. 

Lie-algebraic structure o f  the Poisson bracket. The 
Poisson bracket (14) is bilinear, skew-adjoint, and 
satisfies the Jacobi identity. (The first two properties 
are obvious.) We verify the Jacobi identity by asso- 
ciating this Poisson bracket to the dual of the follow- 
hag Lie algebra of semidirect product type. The 
Poisson bracket (14) is the sum of two parts: a semi- 
direct product part and a two-cocycle. The first part 
(14a) represents the natural Poisson bracket [4] on 
the dual to the Lie algebra 

L 1 = V ×  [A 0 ~A0 ~AI~A1] .  (21) 

The symbol X denotes the semidirect product with re- 
spect to the natural action of the Lie algebra of vector 
fields V on R 3 acting on differential k-forms A k, 
k = 0, 1, and • denotes direct sum. The corresponding 
commutator for the Lie algebra L 1 is given by [4] 

[(x;f;g; 0; ¢), 

: ( I x , 2 ]  ; x ( f )  - 2 ( / ) ;  x(g-) - 2(g);  

X(0) - X(0); X(¢) - X(~b)). (22) 

Dual coordinates on the Lie algebra L 1 are: M dual to 
X E V ; p  t o f E A 0 ; S  t o g E A 0 ; D  to 0 EA1; andB 
to ~ E AI). The second part of the bracket (9b) repre- 
sents the following generalized two-cocycle [5] on LI: 
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6ol((X;f;g; 0;~), (X;f ;g;  0;~)) 

= - O~eijkak(9 ] + (~ei/kak O! (23a) 

= - u(O, ~) + u(~, 0). (23b) 

Here, co I is skew-symmetric and satsifies 

6Ol([(X; ), ( ~ ' ; ) 1 ,  ( X ' ; ) )  + c.p. ~ 0, (24) 

where ( X ; )  denotes the full set of quantities in (22), 
c.p. denotes cyclic permutation of {X, X, X'}, and 
a "" b for two quantities denotes that the difference 
( a -  b) is the divergence of a vector [5]. The two-co- 
cycle (23) is a generalized symplectic two-cocycle [6], 
since with respect to the bilinear form v in (23) on 
A 1 ® A 1, the action of V on A 1 is u-self-adjoint (see 
ref. [6], eq. (3.1)). 

Having been associated to the dual of Lie algebra L 1 
with two-cocycle 6ol, the Poisson bracket in (14) 
satisfies the Jacobi identity. 

The Poisson bracket (14) can be obtained from an- 
other Poisson bracket, expressed in terms of p, S,M, 
D, and the vector potentialA, via the mapping B = 
curl A. Namely, 

{H'F} =-rd3xrSFJ k 8H 8F 5H 
VB/P-U~i + ~ a / S  ~M} 

aF 
+ -K'ff i P a i ~-~ "~g- + 

6H + (a/A i +Aid ) (25a) + (Diai -akDkai i )  ~--~i 

6F 6H aF + aH'] 
+ ~ i  (ajOi- Dkak~i]) ~-~j + ~ii(Ajai Ai, j) ~ J  

+ f d 3 x  ( 6 F  6H 6F 8H ) (25b) 
~ i  60 ~a/ ~A-~ 6'7 ~ /  " 

The first part (25a) of this Poisson bracket is natural- 
ly associated to the dual of the Lie algebra [4] 

L 2 = V X  [A 0 ~ A  0 * A  l•A2],  (26) 

with commutator and dual coordinates as before, ex- 
cept that for L 2 the vector potentialA is dual to 

G A 2. (In n dimensionsA would be dual to A n-1 
and B to A n-2.  However, A n-2  and A n-1 happen to 
have the same number of components for n = 3, so 

the same notation, q~, can be used for the dual coordi- 
nate of A or B in the commutator expression (22) for 
L 1 or L2. ) The second part (25b) of the Poisson brack. 
et represents the symplectic two-cocycle on L2: 

6o 2 ((X;f;g; 0 ; ~b), (~';/;o~; 0; ~)) 

=Oi6i j~i-~iai)O J = 0 . ~ - * .  O. (27) 

(Formula (27) is a symplectic two-cocycle on L 2 
since in I:13 (A 1) ~ (A2) * , by proposition 3.5 in ref. 
[6] .) The two-cocyle in (27) maps to the two-cocyle 
in (23) v i a , - *  c u r l , a n d  ~-* curl ~. 

The dynamical equation forA found by using the 
Poisson bracket in (25) is 

a t a  = ( H , a )  = - V(A  .o )  - E,  (28)  

which yields the magnetic induction equation (1 d) 
upon taking the curl of both sides. The other equa- 
tions (1 a-c,  e) remain the same as before when using 
the Poisson bracket (25). 

Magnetohydrodynamics and electrohydrodynamics. 
Two approximations that can be made directly in the 
hamiltonian structure (12)- (14)  lead to useful sire 
plified models in hamiltonian form. First, i fD is ab- 
sent (so that H* = H, M = p o, and g and q are absent) 
and provided B =/~H and div B = 0, we recover the 
equations of compressible ideal magnetohydrodynam- 
ics in hamiltonian form [4,7]. Using the variational 
derivatives in (13), and either Poisson bracket (14) or 
(25) withD absent gives 

atp = {H, p }  = - divCoo), (29) 

atS = {H, S} = - div(So), (3o)  

arM i = {H,M i) = - ak(Paki +Miv k-HiBk) .  (31a) 

Hence, for the pressure decomposition in (I0) we have 

pd~/dt = - VPMA T -- B X curlH - ½H2V/3, (31b) 

which is the motion equation for ideal magnetohydro- 
dynamics. Finally, using Poisson bracket (14) gives the 
magnetic field equation, 

atB = {H, B} = curl(v× B), (32) 

while using Poisson bracket (25) results in the vector 
potential dynamics, 
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atA = {H,A) = V(t~.A) + uX curiA. (33) 

These equations have the well-known feature that the 
lines of B are "frozen" into the fluid motion [8]. 

The second approximate model is obtained when B 
is absent (so that E* =E,M = po, andg is absent). 
Then i fE  = ot-lD and divD = q, we obtain the equa- 
tions of compressible ideal electrohydrodynamics in 
hamiltonian form. By using eqs. (13) and (14) we f'md 

atp = {H,  p} = - -  div(pl)) ,  (34) 

atS = {H,S} = -- div(Su), (35) 

~,M i : {H,M i} : - ak(P8 k +Pot ok -EiDk) .  (36a) 

Hence, using (113) for the pressure decomposition 
yields 

pd~/dt = - VPMA T + q E - D  X cur ie  - ~E2Va,  

(36b) 

which is the motion equation for ideal electrohydro- 
dynamics when curl E = 0. Finally, the field dynamics 
for the electric displacement vector derives from 

atD = {1-1,19} = curl(o X D) - q v .  (37) 

As a result of (37) we find that both the lines of D 
and the charge density q are frozen into the motion 
of the fluid for electrohydrodynamics. This model also 
describes newtonian self.gravitating fluid motion, upon 
setting q = p and taking ~ -  1 = 41rG with G being the 
gravitational constant, so that D = - V (cI,/4nG), cI, 
the gravitational potential. 

Thus, magnetohydrodynamics and electrohydrody- 
namics both emerge in hamiltonian form as two regular 
limits (special cases actually), of the hamiltonian struc- 
ture (12) - (14)  forthe more general equations (1), 
(2) of a charged fluid interacting self-consistently with 
the electromagnetic field, including the moving-materi- 
al effects of induced polarization and magnetization. 
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